Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 178-185, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117704

RESUMO

Core@shell nanoparticles (NPs) have been widely explored to enhance catalysis due to the synergistic effects introduced by their nanoscale interface and surface structures. However, creating a catalytically functional core@shell structure is often a synthetic challenge due to the need to control the shell thickness. Here, we report a one-step synthetic approach to core-shell CuPd@Pd NPs with an intermetallic B2-CuPd core and a thin (∼0.6 nm) Pd shell. This core@shell structure shows enhanced activity toward selective hydrogenation of Ar-NO2 and allows one-pot tandem hydrogenation of Ar-NO2 to Ar-NH2 and its condensation with Ar-CHO to form Ar-N═CH-Ar. DFT calculations indicate that the B2-CuPd core promotes the Pd shell binding to Ar-NO2 more strongly than to Ar-CHO, thereby selectively activating Ar-NO2. The chemoselective catalysis demonstrated by B2-CuPd@Pd can be extended to a broader scope of substrates, allowing green chemistry synthesis of a wide range of functional chemicals and materials.

2.
J Am Chem Soc ; 145(34): 19076-19085, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606196

RESUMO

Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.

3.
Acc Chem Res ; 56(12): 1591-1601, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37205747

RESUMO

ConspectusFunctional nanoparticles (NPs) have been studied extensively in the past decades for their unique nanoscale properties and their promising applications in advanced nanosciences and nanotechnologies. One critical component of studying these NPs is to prepare monodisperse NPs so that their physical and chemical properties can be tuned and optimized. Solution phase reactions have provided the most reliable processes for fabricating such monodisperse NPs in which metal-ligand interactions play essential roles in the synthetic controls. These interactions are also key to stabilizing the preformed NPs for them to show the desired electronic, magnetic, photonic, and catalytic properties. In this Account, we summarize some representative organic bipolar ligands that have recently been explored to control NP formation and NP functions. These include aliphatic acids, alkylphosphonic acids, alkylamines, alkylphosphines, and alkylthiols. This ligand group covers metal-ligand interactions via covalent, coordination, and electrostatic bonds that are most commonly employed to control NP sizes, compositions, shapes, and properties. The metal-ligand bonding effects on NP nucleation rate and growth can now be more thoroughly investigated by in situ spectroscopic and theoretical studies. In general, to obtain the desired NP size and monodispersity requires rational control of the metal/ligand ratios, concentrations, and reaction temperatures in the synthetic solutions. In addition, for multicomponent NPs, the binding strength of ligands to various metal surfaces needs to be considered in order to prepare these NPs with predesigned compositions. The selective ligand binding onto certain facets of NPs is also key to anisotropic growth of NPs, as demonstrated in the synthesis of one-dimensional nanorods and nanowires. The effects of metal-ligand interactions on NP functions are discussed in two aspects, electrochemical catalysis for CO2 reduction and electronic transport across NP assemblies. We first highlight recent advances in using surface ligands to promote the electrochemical reduction of CO2. Several mechanisms are discussed, including the modification of the catalyst surface environment, electron transfer through the metal-organic interface, and stabilization of the CO2 reduction intermediates, all of which facilitate selective CO2 reduction. These strategies lead to better understanding of molecular level control of catalysis for further catalyst optimization. Metal-ligand interaction in magnetic NPs can also be used to control tunneling magnetoresistance properties across NPs in NP assemblies by tuning NP interparticle spacing and surface spin polarization. In all, metal-ligand interactions have yielded particularly promising directions for tuning CO2 reduction selectivity and for optimizing nanoelectronics, and the concepts can certainly be extended to rationalize NP engineering at atomic/molecular precision for the fabrication of sensitive functional devices that will be critical for many nanotechnological applications.

4.
Nanoscale ; 14(33): 11869-11891, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35943283

RESUMO

Given the continuous and excessive CO2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO2 to value-added chemicals. This review highlights recent advances in CO2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO2 conversion reaction: thermochemical CO2 hydrogenation and electrochemical CO2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H2, electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst-electrolyte interfaces. The review further covers recent studies in integrating CO2 capture and conversion processes so that energy efficiency for the overall CO2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO2 conversion technologies as solutions to negative carbon emission and energy sustainability.

5.
Nanoscale ; 14(16): 6162-6170, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388863

RESUMO

We report the synthesis of Cu2O nanoparticles (NPs) by controlled oxidation of Cu NPs and the study of these NPs as a robust catalyst for ammonia borane dehydrogenation, nitroarene hydrogenation, and amine/aldehyde condensation into Schiff-base compounds. Upon investigation of the size-dependent catalysis for ammonia borane dehydrogenation and nitroarene hydrogenation using 8-18 nm Cu2O NPs, we found 13 nm Cu2O NPs to be especially active with quantitative conversion of nitro groups to amines. The 13 nm Cu2O NPs also efficiently catalyze tandem reactions of ammonia borane, diisopropoxy-dinitrobenzene, and terephthalaldehyde, leading to a controlled polymerization and the facile synthesis of polybenzoxazole (PBO). The highly pure PBO (Mw = 19 kDa) shows much enhanced chemical stability than the commercial PBO against hydrolysis in boiling water or simulated seawater, demonstrating a great potential of using noble metal-free catalysts for green chemistry synthesis of PBO as a robust lightweight structural material for thermally and mechanically demanding applications.

6.
Nanoscale ; 13(20): 9315-9321, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33983347

RESUMO

Developing an efficient single component photocatalyst for overall water splitting under visible-light irradiation is extremely challenging. Herein, we report a metal-free graphitic carbon nitride (g-CxN4)-based nanosheet photocatalyst (x = 3.2, 3.6, or 3.8) with melem rings conjugated by Schiff-base bonds (N[double bond, length as m-dash]C-C[double bond, length as m-dash]N). The presence of the conjugated Schiff-base bond tunes the band gap of g-CxN4 and, more importantly, serves as an electron sink to suppress electron-hole pair recombination. The projected density of states (PDOS) calculations suggest that the melem ring and Schiff-base bond act as oxidizing and reducing centers, respectively, for photocatalytic water splitting. As a result, g-CxN4, in particular g-C3.6N4, can catalyze overall water splitting without the need for any co-catalyst or sacrificial donor. Under visible light (>420 nm wavelength) irradiation, g-C3.6N4 catalyzes the overall water splitting with H2 and O2 generation rates of 75.0 and 36.3 µmol h-1 g-1, respectively. g-C3.6N4 is the most efficient single-component photocatalyst ever reported for overall water splitting. Our studies demonstrate a new approach for tuning the bandgap and the electronic structure of graphitic carbon nitride for maximizing its photocatalytic performance for water splitting, which will be important for hydrogen generation and for energy applications.

7.
J Am Chem Soc ; 143(4): 2115-2122, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493397

RESUMO

Enabling catalysts to promote multistep chemical reactions in a tandem fashion is an exciting new direction for the green chemistry synthesis of materials. Nanoparticle (NP) catalysts are particularly well suited for tandem reactions due to the diverse surface-active sites they offer. Here, we report that AuPd alloy NPs, especially 3.7 nm Au42Pd58 NPs, catalyze one-pot reactions of formic acid, diisopropoxy-dinitrobenzene, and terephthalaldehyde, yielding a very pure thermoplastic rigid-rod polymer, polybenzoxazole (PBO), with a molecular weight that is tunable from 5.8 to 19.1 kDa. The PBO films are more resistant to hydrolysis and possess thermal and mechanical properties that are superior to those of commercial PBO, Zylon. Cu NPs are also active in catalyzing tandem reactions to form PBO when formic acid is replaced with ammonia borane. Our work demonstrates a general approach to the green chemistry synthesis of rigid-rod polymers as lightweight structural materials for broad thermomechanical applications.

8.
J Am Chem Soc ; 142(18): 8440-8446, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301612

RESUMO

We report a chemical method to synthesize size-controllable SmCo5 nanoparticles (NPs) and to stabilize the NPs against air oxidation by coating a layer of N-doped graphitic carbon (NGC). First 10 nm CoO and 5 nm Sm2O3 NPs were synthesized and aggregated in reverse micelles of oleylamine to form SmCo-oxide NPs with a controlled size (110, 150, or 200 nm). The SmCo-O NPs were then coated with polydopamine and thermally annealed to form SmCo-O/NGC NPs, which were further embedded in CaO matrix and reduced with Ca at 850 °C to give SmCo5/NGC NPs of 80, 120, or 180 nm, respectively. The 10 nm NGC coating efficiently stabilized the SmCo5 NPs against air oxidation at room temperature or at 100 °C. The magnetization value of the 180 nm SmCo5/NGC NPs was stabilized at 86.1 emu/g 5 days after air exposure at room temperature and dropped only 1.7% 48 h after air exposure at 100 °C. The stable SmCo5/NGC NPs were aligned magnetically in an epoxy resin, showing a square-like hysteresis behavior with their Hc reaching 51.1 kOe at 150 K and 21.9 kOe at 330 K and their Mr stabilized at around 84.8 emu/g. Our study demonstrates a new strategy for synthesizing and stabilizing SmCo5 NPs for high-performance nanomagnet applications in a broad temperature range.

9.
ACS Appl Mater Interfaces ; 9(11): 9620-9629, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28248075

RESUMO

The rational design and controllable fabrication of electrode materials with tailored structures and superior performance is highly desirable for the next-generation lithium ion batteries (LIBs). In this work, a novel three-dimensional (3D) graphite foam (GF)@SnO2 nanorod arrays (NRAs)@polyaniline (PANI) hybrid architecture was constructed via solvothermal growth followed by electrochemical deposition. Aligned SnO2 NRAs were uniformly grown on the surface of GF, and a PANI shell with a thickness of ∼40 nm was coated on individual SnO2 nanorods, forming a SnO2@PANI core-shell structure. Benefiting from the synergetic effect of 3D GF with large surface area and high conductivity, SnO2 NRAs offering direct pathways for electrons and lithium ions, and the conductive PANI shell that accommodates the large volume variation of SnO2, the binder-free, integrated GF@SnO2 NRAs@PANI electrode for LIBs exhibited high capacity, excellent rate capability, and good electrochemical stability. A high discharge capacity of 540 mAh g-1 (calculated by the total mass of the electrode) was achieved after 50 cycles at a current density of 500 mA g-1. Moreover, the electrode demonstrated superior rate performance with a discharge capacity of 414 mAh g-1 at a high rate of 3 A g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...